DIFERENÇA ENTRE DOIS CONJUNTOS

28/06/2019

A diferença entre dois conjuntos A e B, é um conjunto formado pelos elementos de A que não pertencem a B. Em outras palavras, pode-se dizer que essa diferença é dada pelos elementos que pertencem exclusivamente a A, quando comparados com os elementos de B.

 

Olá, pessoal! Como vão?

É verdade que no cotidiano nós costumamos utilizar muito a subtração, que é, inclusive, uma das quatro operações fundamentais da aritmética. Agora, vocês já pensaram algum dia em aplicar essa operação na teoria dos conjuntos? Pois então, saibam que é possível calcular a diferença entre dois conjuntos!

Neste texto, nós vamos entender direitinho o cálculo que envolve essa operação. Faremos também alguns exemplos, de modo a consolidar esse conhecimento. Mas antes disso, quem quer ter a preparação completa para a prova do ENEM e dos vestibulares, precisa conhecer a plataforma do Professor Ferretto! Só lá vocês encontram tudo sobre logaritmos, análise combinatória, probabilidade, trigonometria e toda a matemática do ensino médio. Além disso, os alunos da plataforma contam com um curso de física completo, e mais de 1200 questões pra resolver. Gostaram? Então acessem o site para saber mais!

Beleza, pessoal? Para entendermos todos os conceitos que serão vistos logo mais, vamos fazer uma breve revisão. Ela abordará a forma como dois conjuntos A e B se relacionam quando possuem, ou não, elementos em comum. Vem comigo aqui!

 

1. REVISANDO A TEORIA DOS CONJUNTOS

Bloco de anaotação do Ferretto para revisar a teoria dos conjuntos

Quando se fala em teoria de conjuntos, a representação na forma de diagrama torna a resolução das operações muito mais simples. Bom, pelo menos é o que acontece na maioria das vezes. Por isso, vamos revisar agora 3 maneiras nas quais dois conjuntos A e B podem se relacionar juntamente a sua representação na forma de diagrama. Acompanhem comigo.

Representação em forma de diagrama quando um conjunto é subconjunto de outro

Quando A é subconjunto de B, pode-se dizer que A é parte de B, ou que A está contido em B. Isso significa que todos os elementos de A também pertencem ao conjunto B.

Representação em forma de diagrama quando dois conjuntos são disjuntos

Já quando A e B são conjuntos disjuntos, significa que eles não possuem elementos em comum, ou seja, é um caso em que nenhum elemento de A também pertence a B, e vice-versa.

Representação em forma de diagrama quando dois conjuntos possuem elementos em comum

E por fim, quando os diagramas de A e B estão entrelaçados, significa que estes dois conjuntos possuem apenas alguns elementos em comum.

Entendido, pessoal? Sendo assim, podemos partir com tranquilidade para operação entre conjuntos que aprenderemos hoje. Sigam comigo!

 

2. DIFERENÇA ENTRE DOIS CONJUNTOS

Aluno aponta para o quadro mostrando um exemplo de diferença entre dois conjuntos

Dados dois conjuntos A e B, chama-se diferença entre A e B, o conjunto formado pelos elementos de A que não pertencem a B.

Em outras palavras, podemos dizer que os elementos que estão no conjunto A, e não fazem parte do conjunto B, formam o conjunto diferença entre A e B (A – B). Já em forma de símbolos, a diferença entre os conjuntos A e B é dada pelo conjunto dos elementos x, tais que esses elementos x pertençam ao conjunto A mas não pertençam ao conjunto B. É isso que aparece no quadro abaixo.

Diferença entre dois conjuntos descrita por propriedade

E aí, o que acharam desta definição? Quando olhamos para o exemplo que o nosso amigo apresenta no quadro, as coisas começam a ficar um pouco mais claras, não é? É por isso que partiremos agora para os famosos exemplos resolvidos! Eles nos possibilitarão enxergar o assunto através de mais alguns pontos de vista. Vem comigo!

 

2.1 Exemplos resolvidos sobre a diferença entre dois conjuntos

Ferretto fará exemplos resolvidos sobre a diferença entre dois conjuntos

 

1. Em todos os itens, obtenha o conjunto diferença entre A e B (A – B). Em seguida, encontre também o conjunto diferença entre B e A (B – A).

a. A = {1, 2, 3, 4} e B = {2, 4, 5}

Acabamos de aprender que o conjunto diferença entre A e B é formado pelos elementos que pertencem a A e não pertencem a B. Baseando-se nessa ideia, vocês sabem como resolver essa questão? Fiquem tranquilos, pessoal, a ideia é comparar tudo com a subtração mesmo, como dissemos lá no início do texto. Para conhecer os elementos do conjunto A – B, basta observamos os elementos que pertencem a ambos os conjuntos, e descontá-los, tirá-los, ou riscá-los do conjunto A. Os elementos que restarem formarão o conjunto diferença que tanto buscamos. Vejam só:

Cálculo da diferença entre A e B quando estes possuem alguns elementos em comum

Observem que nós literalmente riscamos os elementos que são comuns a ambos os conjuntos. Isso aconteceu porque deveríamos descontar dos elementos de A, todos os elementos que também pertenciam a B. Notem que o conjunto resultante A – B foi formado pelos elementos que pertencem exclusivamente a A.

É claro que para obter o conjunto diferença entre B e A, a lógica precisa ser invertida. Vamos observar novamente os elementos que são comuns a ambos os conjuntos, mas agora vamos riscá-los de B, porque queremos descontar dos elementos de B, todos os elementos que também pertencem a A. Assim, B – A será formado apenas pelos elementos que pertencem exclusivamente a B.

Cálculo da diferença entre B e A quando estes possuem alguns elementos em comum

 

Facilitando a operação entre os conjuntos com a representação na forma de diagrama

Representação em forma de diagrama dos conjuntos A e B do item a

Através do diagrama fica ainda mais fácil de compreender a diferença entre os conjuntos A e B, e B e A. No primeiro caso, A – B, estamos descontando ou retirando B. Portanto, basta desconsiderar toda a região dos elementos que pertencem a B. Já no segundo caso, B – A, vejam que quem está sendo subtraído, ou excluído, é o A. Assim, é só desconsiderar toda a região dos elementos que pertencem a A, como mostra a imagem seguinte.

Representação em forma de diagrama da diferença entre A e B e B e A do item a

 

b. A = {a, b, c} e B = {d, e}

Agora que já sabemos exatamente o que fazer, podemos determinar os conjuntos A – B e B – A sem rodeios. Mas vejam só que coisa interessante: nesse caso, A e B não possuem elementos em comum, ou seja, eles são conjuntos disjuntos.

Cálculo da diferença entre A e B e B e A quando estes são disjuntos

Podemos entender melhor o caso quando nos perguntamos: o que acontece quando descontamos ou subtraímos o número zero de qualquer número real? Não há mudança alguma, não é mesmo? Bom, se A e B são disjuntos, existem zero elementos comuns entre eles, e assim, todos os elementos pertencentes a A já são exclusivos de A. Da mesma forma, os elementos de B também já são exclusivos de B. Por isso, não conseguimos riscar elemento algum nos dois cálculos, e concluímos que a diferença entre A e B é o próprio conjunto A, enquanto que a diferença entre B e A é o próprio conjunto B.

Representação em forma de diagrama da diferença entre A e B e B e A do item b

 

c. A = {a, b} e B = {a, b, c}

Quem prestou atenção na revisão logo no início do texto, já percebeu que nesse item A é subconjunto de B, pois todos os seus elementos também pertencem a B. Calculando os conjuntos diferença entre A e B e B e A, veremos em que situação curiosa isso vai dar. Vem comigo!

 

Quando A é subconjunto de B

Cálculo da diferença entre A e B e B e A quando um é subconjunto do outro

Quanto ao conjunto diferença entre B e A, tudo certo, não é mesmo? Ele é um conjunto unitário. Agora, reparem que por A ser subconjunto de B, quando a diferença entre A e B é calculada, todos os elementos de A são eliminados, não restando nenhum elemento no conjunto. Neste caso, A – B é um conjunto vazio.  

Representação em forma de diagrama da diferença entre A e B e B e A do item c

Conseguiram entender a ideia? Vejam que em nenhum dos exemplos vistos até agora, os conjuntos A – B e B – A foram iguais. Isso nos mostra que a propriedade comutativa não é válida para a diferença entre dois conjuntos, ou seja:

A menos B é diferente de B menos A

 

Bom, depois de tudo o que acabamos de discutir, não há dúvidas de que esse texto está chegando ao fim! Agradeço imensamente a atenção de vocês, e espero que o que vimos aqui, somado ao que vocês verão agora no vídeo que está em anexo, seja muito proveitoso para os seus estudos!

O Complementar de um Conjunto também pode ser encontrado através da operação de diferença entre os conjuntos. Se vocês quiserem saber mais sobre o assunto, é só acessar este texto.

A teoria dos conjuntos é base para toda a matemática do ensino médio. Portanto, vocês já podem se considerar mais próximos daquela nota ótima desejada no ENEM e nos vestibulares!

Um abraço! Bons estudos em matemática!